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What is the “Cosmic Dawn”?
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Here’s what we think...
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And there’s still a lot of open questions.

® What did the first stars, galaxies, and black holes
look like and how did they form?

® What was the thermal and. ionization' history of the
IGM and what determined it2

® Can we measure the matter power spectrum during
this epoch and test ACDM?

Image: Avi Loeb &



How can we observe
the Cosmic Dawn?®



With the CMB...




...we only get a thin shell at high redshift.

e

""z= 1100



Galaxy surveys only tell us about the local universe.




So we turn to 21 cm Tomography.




So we turn to 21 cm Tomography.




So we turn to 21 cm Tomography.




A huge volume of the universe can be
explored with 21 cm tomography.

Which means we
can do cosmology
very precisely!



Our first target will be the
“Epoch of Reionization”




Epoch of Reionization

)

Marcelo Alvarez, Ralf Kaehler, Tom Abel



The first detection will be statistical.
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In Practice...

Cosmological Signal

Frequency /
Line of Sight




...the cosmological signal is very dim.

Cosmological Signal
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And the contaminants are roughly four
orders of magnitude brighter.
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How can we separate the signal
from bright foregrounds?



Using their spectral
smoothness.

- Synchrotron Foregrounds
infensity 4 orders of
21cm Signal magnitude

Frequ;ncy
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And we find an “EoR Window.”
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And we find an “EoR Window.”
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The “wedge” is the imprint of the
chromaticity of the synthesized beam.
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The point spread function has a complicated frequency dependence
that intfroduces spectral structure to spectrally smooth foregrounds.

Dillon et al. (2014b)



But it’s limited by geometry.
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But it’s limited by geometry.
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The maximum delay of a
foreground obiject is set
by the horizon and the
length of the baseline.

Parsons et al. (2012)
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The maximum delay of a
foreground obiject is set
by the horizon and the
length of the baseline.

Parsons et al. (2012)
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The wedge has been observed to be,
as far as we can tell, foreground free.
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How do we keep the EoR window
clean and understand the errors
on our measurements®



In an ideal world,
there’s an optimal estimator...

Invertible Inverse
Normalization Covariance
Matrix / Weighting
X
Data \ Fourier
Transform

Quadratic Power Spectrum Estimator and Bin

preserves all cosmological information
(adapted from CMB and galaxy survey work) Liv & Tegmark (2011)



..with well-understood error properties.

Cov(p) = MFMT

/ Fisher Information

Contains all the calculated from the
errors and error covariance models:
covariances 1

FP = St c'QrCc Q7]

Liv & Tegmark (2011)
Dillon, Liu, & Tegmark (2013)



Sounds complicated. Why bother?



The Signal




Power (Arbitary Units)

The Signal

Just like the
cosmological signal, -
there’s power on
many scales
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Power (Arbitary Units)
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The Noise

Blue noise represents
noise for high angular.

frequency noise.
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The Foregrounds
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Inverse Variance Weighting
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Careful statistics help isolate the
signal from the foregrounds...



Recall...
— MO‘BXTC_lQO‘C_lx
and

Cov(p) = MFMT

M~ F— 1/2

® Smallest errors, but ® Decorrelated errors.

errors are correlated
® Each band power represents

® Hard to cut out a mutually exclusive yet
foregrounds collectively exhaustive piece
of information.

Tegmark et al. (2002



A good estimator preserves the EoR Window.
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But there’s a catch.

Cc'
® Scales as O(N3)

® Computationally infeasible with
current data sets



Fast Power Spectrum Estimation

1. Generate lots of random data cubes from the
model covariance, exploiting symmetries

Dillon, Liu, &

All in O(NlogN)* Tegmark (2013)



, and because N is a diagonal ma

Because N = F' NF

trix, we define Px and Py as follows:

Py = N-V2p
Pl = F NV (C2)

Since applying Py only requires multiplying by the in
verse square root of a dingonal matrix and Fourier trans
forming in two dimensions, the complexity of applying
Py to a vector is Jess than O(N log N

2. Constructing a Preconditioner for U

I'he matrix U (Equation 55) can be written as the ten
sor product of three Toeplitz matrices, one for each di
mension, bookended by two diagonal matrices, Dy, Fur
thermore, since Dy depends only on frequency (as we
saw in Section 1[I D 2), its effect can be folded into U,
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Solving, we finally have our Py that acts on 1 + U + T

and vields I + U

(C20)

where Ap is the sole eigenvalue we are considering and

Again, we will lock at a preconditioner of the Py

Finally, generalizing to multiple eigenvalues and taking
advantage of the orthonormality of the eigenvectors, we

(€21)  have

This time, the N "' ° matrices do not pass through the
eigenvectors to cancel one another out. We now exploit
the spectral similarity of foregrounds and the fact that

(C22)

The result of this somewhat complicated preconditioner
is a recdduction of the condition mber of the matrix to

be inverted by many orders of magnitude (see Figure 5).

Lastly, we include Fourier transforms at the front and
the back of the preconditioner, so that the result, when
multiplied by a real vector, returns a real vector. There
fore, the total preconditioner we use for C is:

cigenvalues vields another quadratic equation for 3:

where v, is the nc

“»

Let us now take

# 1)Ar F'PuPrPN(R+U+N+G)PLP.PF

(C26)

which can be interpreted as a set of matrices describing
spectral coherence, each localized to one point source,
and all of which ¢ lly uncorrelated. And likewise,
wWe ca

(C15)
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We now make two key approximations for the purposes of
preconditioning, First, we assume that all the 2, eigen
vectors are the same, S0 v., = v, for all n, all of
which are also taken to be the same as the egenvectors
that appear in the preconditioner for U in Equation C13.
Second, as in Section C2, we are only interested in act

ing upon the largest eigenvalues of R and G. To this
end, we will ultimately only consider the largest values
of Ani and A . Az Ay Ac
the computational complexity of the preconditioner

Our strategy for overcoming the difficulty of the differ
ent bases is to simply add the two perpendicular parts of

which will vastly reduce

the matrices and then decompose the sum into its eigen

vilues and eigenvectors, We therefore define
' "R+G

because it looks like R and
Given the above approximations, we can

(choosing the symbol T
sounds like G).

reexpress I' as follows
) =~y \
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A

where we have defined each I' ;. as:

(C17)

(C18)
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Due to the high spectral coherence of the foregrounds,
only a few values of & need to be included to precondition
for I'. Considering the limit on angular box size imposed
by the flat sky approximation and the limit on angular
resolution imposed by the array size, this should require
at most a few eigenvalue determinations of matrices no
bigger than about 10° entries on a side. Moreover, those
cigenvalue decompositions need only be computed once
and then only partially stored for future use. In practice,
this is not a rate limiting step, as we see in Section 111 E 2.

We now write down the eigenvalue decomposition of

/
r >‘ >‘,"._.v

e | A

(C19)

Before we attack the general case, we assume that only
one value of A, is worth preconditioning —we generalize
to the full Py later. We now know that if we have a




Fast Power Spectrum Estimation

1. Generate lots of random data cubes from the
model covariance, exploiting symmetries

2. Calculate our quadratic estimator

3. Monte Carlo many quadratic estimators to
get error bars and window functions.

Use Cov(q) = F

. 1
To avoid F°P = St c'Q*Cc'Q”

Dillon, Liu, &

All in O(NlogN)* Tegmark (2013)



It works as fast as advertised.
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This is timely because there’s there’s a lot of
21 cm interferometers now up and running.

And lots of related experiments in 21 cm Cosmology:

ASKAP, BAOBAB, BINGO, CHIME, CRT, DARE, EDGES,
EMBRACE, GBT, KAT-7, LEDA, LWA, MeerKAT, SKA...and more



The first application of our power spectrum
estimation technique was to the MWA.

® Data taken in March 2010 with the Murchison

Widefield Array 32 tile prototype array.in .
Western Australia

® Approximately 3-5 hours of observation per
frequency band

Image:
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The current best published results are about an order of
magnitude better (Parsons et al. 2013, Jacobs et al. 2014),
but we're all still pretty far from the theoretical signal.



MWA 128-Tile Preliminary Data

(Q

[Preliminary Data Removed From Online Talk]



MWA 128-Tile Preliminary Data

Power spectrum noise has

come down by more than 10°
since Dillon et al. (2014q)

[Preliminary Data Removed From Online Talk]



Work is still ongoing.

® Further refining calibration

® |ntegrating down with more data, while
performing jackknife tests of data quality

® Improving our foreground and
foreground uncertainty models



We also need to understand our maps.

The Instrument  True Sky

\ v Y Noise where:
Measurements —> Y — AX + n <nnT> =\

Optimal Map ~ 1
Estimator — > X — DATN y

Normalization

Dillon et al. (2014b)



We also need to understand our maps.

The Instrument  True Sky

\ v Y Noise where:
Measurements —> Y — AX + n <nnT> =\

Optimal Map ~ 1
Estimator — > X — DATN y

Normalization

(X) = DATN 'Ax = fx

Matrix of PSFs

Dillon et al. (2014b)



Declination (Degrees)

Our maps have ditferent
statistics than the true sky.
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Our maps have ditferent
statistics than the true sky.

® We need to know P to estimate power
spectra and model foregrounds.

® Nominally, P maps every point on the
true sky to every point in the dirty map at
every frequency and knows about every
observation...so it’s hard to calculate.

Dillon et al. (2014b)



Three ways to make it faster...

1. Truncating the PSF.

2. Combing together multiple sequential
observations.

3. Fitting the PSF's translational variations
with low-order polynomials.

All have speed vs. accuracy tradeoffs.

Dillon et al. (2014b)



Truncating the
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Truncating the PSF trades speed for accuracy.
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What’s next?

® End-to-end simulation incorporating
optimal mapmaking with quadratic
power spectrum estimators.

® Apply an integrated mapmaking and
power spectrum pipeline to real data
to better keep the EoR window clean
and to try to subtract foregrounds.
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How do we build a more
sensitive telescope?
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HERA will have:

® At least 331 stationary dishes that vastly
increase sensitivity (at the cost of field of view).
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The HERA Stripe

/

W

HERA is a drift scan instrument that maps
out a stripe of constant declination.



HERA will have:

® At least 331 stationary dishes that vastly
increase sensitivity (at the cost of field of view).

® A maximally packed configuration with short
baselines that are less foreground-contaminated.



Recall, shorter baselines
have “less wedge” in them.

Time Delay

Baseline Length



HERA will have:

® At least 331 stationary dishes that vastly
increase sensitivity (at the cost of field of view).

® A maximally packed configuration with short
basellnes that are Iess foreground contammated.

______

‘o Mcmy redundanf baselmes that |mprove
sensmwty cmd make callbrahon much ec15|er

- - - 4w —

-



Redundant baselines make the
precise calibration necessary for
s 2] cm.tomography much easier.




MITEoR: a prototype highly-scalable
interferometer for 21 cm cosmology.



Redundant baselines allow us to quickly and precisely
calibrate the amplitudes and phases of every antenna.

o -100+

Each shape/color is

a unique baseline.
Zheng et al. (2014)
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We'll constrain the ionization
history of the universe...
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Figure: Judd Bowman + Zahn et al. (2012)



...and its thermal history
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We'll constrain X-ray heating and the population
of high redshift quasars via the 21 cm forest.
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And we'll also provide the first tight constraints
on the astrophysics underlying reionization.

e /:.: Minimum virial
temperature (and thus
mass) of ionizing
galaxies function of k and z

FRAS Ll I 2
3 Messmger ef

Pober, Liu, Dillon, et al. (2013)



Using a Fisher matrix analysis, we can
jointly constrain all three parameters...
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...and break degeneracies using
information from multiple redshifts.
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And if we can get better and foreground
subtraction and work within the wedge...
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This is no small task! We'll need even better statistical algorithms and
a precise understanding of both foregrounds and our instrument.

Pober, Liu, Dillon, et al. (2013)



...we can improve the parameter
constraints from ~5% to ~1%.
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(These are parameters still
unconstrained by an order
of magnitude or more.)
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Next steps...

® What degeneracies exist between
cosmological parameters and reionization
parameters using 21 cm tomography?

® How can other cosmological probes
complement and be complemented by 21 cm?

® This hasn’t been investigated in the
context of the EoR Window.



n Conclusion

S 21 cm Tomography W||| open up ¢ huge volume of the
unlverse during the 'unexplored “Cosmic Dawn '

: ;:1‘)5,_' ‘
. » Maps and power spectrum measurements require

_careful, rigorous statistics'and new, fast algorithms.

® We've already made great progress with the MWA,
setting upper limits over many redshifts.

® HERA will draw on the lessons of MWA, PAPER, and

MITEoR with vastly increased sensitivity and can
convincingly detect the EoR and tightly constrain the
physics behind reionization and the Cosmic Dawn.



Backup Slides



The “wedge” is the imprint of the
chromaticity of the synthesized beam.
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Results:
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The wedge evolves -
with frequency in
just the way we
expected.
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Redundant baselines allow for a quantitative test of
calibration and the realtime identification of problems.
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We'll begin imaging the EoR directly.
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Varying the reionization parameters yields
qualitatively different power spectra.
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